Graph neural networks (GNNs) have emerged as a powerful framework for analyzing and learning from structured data represented as graphs. GNNs operate directly on graphs, as opposed to conventional ...
Fig. 1 shows the mapping of points from the training sample in the coordinates of the two main features – u1 and u2. The color of the point corresponds to the class (red – 0, aqua – 1). From the ...
Dr. Chris Hillman, Global AI Lead at Teradata, joins eSpeaks to explore why open data ecosystems are becoming essential for enterprise AI success. In this episode, he breaks down how openness — in ...
Emergence of new applications and use cases: Neural networks are being applied to an increasingly diverse range of applications, including computer vision, natural language processing, fraud detection ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results